Categories
Accents
30
θ
theta
e
ˊ
acute
y
ˉ
bar
e
u
˘
breve
oe
ˇ
check
x
....
ddddot
x
...
dddot
x
¨
ddot
x
˙
dot
e
u
ˋ
grave
θ
^
hat
a
˚
mathring
x
+
⋯
+
x
n
times
overbrace
A
B
overleftarrow
A
B
overleftrightarrow
a long argument
overline
A
B
overrightarrow
′
prime
yes
&
no
text
M
~
tilde
a
˘
u
n
times
x
+
⋯
+
x
underbrace
A
B
underleftarrow
A
B
underleftrightarrow
a long argument
underline
A
B
underrightarrow
a
ˇ
v
F
vec
A
B
widehat
A
B
widetilde
Annotation
13
π
pi
5
bcancel
ab
boxed
5
cancel
∘
circ
b
a
frac
=
not
x
+
⋯
+
x
n
times
overbrace
a
2
+
b
2
=
c
2
3.1c
tag-star
a
2
+
b
2
=
c
2
(
3.1c
)
tag
yes
&
no
text
n
times
x
+
⋯
+
x
underbrace
A
BC
xcancel
Arrows
61
↓
downarrow
↔
leftrightarrow
⇚
lleftarrow
⟵
longleftarrow
⟷
longleftrightarrow
⟶
longrightarrow
↰
lsh
→
rightarrow
⇛
rrightarrow
↱
rsh
↑
uparrow
↕
updownarrow
↺
circlearrowleft
↻
circlearrowright
↶
curvearrowleft
↷
curvearrowright
⇠
dashleftarrow
⇢
dashrightarrow
⇊
downdownarrows
⇃
downharpoonleft
⇂
downharpoonright
←
gets
↩
hookleftarrow
↪
hookrightarrow
A
⟺
B
iff
P
⟸
Q
impliedby
P
⟹
Q
implies
⇝
leadsto
⇐
leftarrow
↢
leftarrowtail
↽
leftharpoondown
↼
leftharpoonup
⇇
leftleftarrows
⇆
leftrightarrows
⇋
leftrightharpoons
↭
leftrightsquigarrow
⟼
longmapsto
↫
looparrowleft
↬
looparrowright
↦
mapsto
↮
nleftrightarrow
↛
nrightarrow
↗
nearrow
⇍
nleftarrow
↖
nwarrow
↾
restriction
↣
rightarrowtail
⇁
rightharpoondown
⇀
rightharpoonup
⇄
rightleftarrows
⇌
rightleftharpoons
⇉
rightrightarrows
⇝
rightsquigarrow
↘
searrow
↙
swarrow
→
to
↞
twoheadleftarrow
↠
twoheadrightarrow
↿
upharpoonleft
↾
upharpoonright
⇈
upuparrows
Big Operators
18
⋂
bigcap
⋃
bigcup
⨀
bigodot
⨁
bigoplus
⨂
bigotimes
⨆
bigsqcup
⨄
biguplus
⋁
bigvee
⋀
bigwedge
∐
coprod
∭
iiint
∬
iint
∫
int
∫
intop
∮
oint
∏
prod
∫
smallint
∑
sum
Binary Operators
62
&
and
∩
cap
∪
cup
⨿
amalg
∗
ast
⊼
barwedge
◯
bigcirc
a
mod
b
bmod
⊡
boxdot
⊟
boxminus
⊞
boxplus
⊠
boxtimes
∙
bullet
⋅
cdot
⋅
cdotp
a
⋅
b
centerdot
∘
circ
⊛
circledast
⊚
circledcirc
⊝
circleddash
⋎
curlyvee
⋏
curlywedge
÷
div
⋇
divideontimes
∔
dotplus
⩞
doublebarwedge
⋒
doublecap
⋓
doublecup
⋗
gtrdot
⊺
intercal
∧
land
.
ldotp
⋋
leftthreetimes
⋖
lessdot
⊲
lhd
∨
lor
⋉
ltimes
3
≡
5
mod
2
mod
∓
mp
⊙
odot
⊖
ominus
⊕
oplus
⊘
oslash
⊗
otimes
±
pm
x
(
mod
a
)
pmod
x
(
a
)
pod
⊳
rhd
⋌
rightthreetimes
⋊
rtimes
∖
setminus
∖
smallsetminus
⊓
sqcap
⊔
sqcup
×
times
⊴
unlhd
⊵
unrhd
⊎
uplus
∨
vee
⊻
veebar
∧
wedge
≀
wr
Bra-ket Notation
4
⟨
ψ
∣
bra
∣
ψ
⟩
ket
ϕ
phi
b
a
frac
Class Assignment
8
a
!
b
mathbin
a
+
(
b
>
+
c
mathclose
ab
inside
c
d
mathinner
⋆
a
b
mathop
a
+
<
b
)
+
c
mathopen
1
,
234
,
567
mathord
A
−
B
mathpunct
a
#
b
mathrel
Color
4
A
a
B
b
123
color
Black on red
colorbox
A
fcolorbox
F
=
ma
textcolor
Delimiter Sizing
12
(
)
big
(
)
bigg
(
biggl
biggm
)
biggr
(
bigl
bigm
)
bigr
L
A
RGE
large
{
b
a
left
P
(
A
∣
B
)
middle
b
a
)
right
Delimiters
31
↓
downarrow
↑
uparrow
↕
updownarrow
∣
vert
\
backslash
a
>
b
gt
∣
lvert
⟨
A
⟩
langle
{
lbrace
[
lbrack
⌈
lceil
{
b
a
left
⌊
lfloor
⟮
lgroup
└
llcorner
⎰
lmoustache
(
lparen
┘
lrcorner
<
lt
∣
rvert
⟨
A
⟩
rangle
}
rbrace
]
rbrack
⌉
rceil
⌋
rfloor
⟯
rgroup
b
a
)
right
⎱
rmoustache
)
rparen
┌
ulcorner
┐
urcorner
Environments
37
[
0
−
1
−
1
0
]
bmatrix-star
[
a
c
b
d
]
bmatrix
A
b
↓
⏐
C
a
B
⏐
↑
c
D
cd
0
−
1
−
1
0
vmatrix-star
a
c
b
d
vmatrix
a
d
+
e
=
b
+
c
=
f
align-star
a
d
+
e
=
b
+
c
=
f
align
10
3
x
+
x
+
3
13
y
=
2
y
=
4
alignat-star
10
3
x
+
x
+
3
13
y
=
2
y
=
4
alignat
a
d
+
e
=
b
+
c
=
f
aligned
10
3
x
+
x
+
3
13
y
=
2
y
=
4
alignedat
a
c
b
d
array
a
c
b
d
begin
{
a
c
if
b
if
d
cases
a
c
b
d
cr
{
a
c
if
b
if
d
dcases
x
2
+
x
2
def
a
c
if
b
if
d
}
drcases
a
c
b
d
end
a
=
b
+
c
equation-star
a
=
b
+
c
equation
a
=
b
e
=
b
+
c
gather
a
=
b
e
=
b
+
c
gathered
a
c
b
d
hdashline
a
c
b
d
hline
0
−
1
−
1
0
matrix-star
a
c
b
d
matrix
a
d
+
e
=
b
+
c
=
f
nonumber
a
d
+
e
=
b
+
c
=
f
notag
(
0
−
1
−
1
0
)
pmatrix-star
(
a
c
b
d
)
pmatrix
a
c
if
b
if
d
}
rcases
a
c
b
d
smallmatrix
a
=
b
+
c
=
e
+
f
split
∑
sum
a
2
+
b
2
=
c
2
(
3.1c
)
tag
yes
&
no
text
Extensible Arrows
16
ab
c
xleftarrow
ab
c
xleftrightarrow
ab
c
xrightarrow
ab
c
xhookleftarrow
ab
c
xhookrightarrow
ab
c
xleftharpoondown
ab
c
xleftharpoonup
ab
c
xleftrightharpoons
ab
c
xlongequal
ab
c
xmapsto
ab
c
xrightharpoondown
ab
c
xrightharpoonup
ab
c
xrightleftharpoons
ab
c
xtofrom
ab
c
xtwoheadleftarrow
ab
c
xtwoheadrightarrow
Font
29
ABC
bbb
AaBb12
bf
AaBb
boldsymbol
A
a
B
b
123
cal
AaBb
frak
AaBb
it
AB
mathbb
AaBb123
mathbf
A
a
B
b
123
mathcal
AaBb
mathfrak
AaBb
mathit
A
a
B
b
mathnormal
AaBb123
mathrm
AB
mathscr
AaBb123
mathsf
AaBb123
mathtt
μ
mu
μ
pmb
AaBb12
rm
AaBb123
sf
yes
&
no
text
AaBb123
textbf
AaBb
textit
AB
textnormal
AaBb123
textrm
AaBb123
textsf
AaBb123
texttt
AaBb123
textup
AaBb123
tt
Fractions and Binomials
11
b
+
1
a
above
(
k
n
)
binom
1
+
1
+
1
2
2
2
cfrac
(
k
+
2
n
+
1
)
choose
(
k
n
)
dbinom
b
−
1
a
−
1
dfrac
b
a
frac
(
a
+
1
a
]
genfrac
b
+
2
a
+
1
+
c
over
(
k
n
)
tbinom
b
a
tfrac
Greek Letters
39
γ
gamma
λ
lambda
ϕ
phi
π
pi
σ
sigma
θ
theta
υ
upsilon
ξ
xi
α
alpha
β
beta
χ
chi
Δ
delta
ϝ
digamma
ϵ
epsilon
η
eta
ι
iota
κ
kappa
μ
mu
ν
nu
Ω
omega
ο
omicron
Ψ
psi
ρ
rho
τ
tau
Δ
vardelta
Γ
vargamma
Λ
varlambda
Ω
varomega
φ
varphi
ϖ
varpi
Ψ
varpsi
ς
varsigma
ϑ
vartheta
Υ
varupsilon
Ξ
varxi
ε
varepsilon
ϰ
varkappa
ϱ
varrho
ζ
zeta
Letters
19
k
bbbk
Ⅎ
finv
⅁
game
ℑ
im
ℜ
re
ℵ
aleph
ℶ
beth
ℸ
daleth
ℓ
ell
ð
eth
ℷ
gimel
ℏ
hbar
ℏ
hslash
imath
jmath
∇
nabla
∂
partial
yes
&
no
text
℘
wp
Line Breaks
2
a
b
newline
nobreak
Logic and Set Theory
27
↔
leftrightarrow
⊂
subset
⊃
supset
∵
because
∁
complement
∅
emptyset
∃
exists
∀
forall
b
a
frac
←
gets
A
⟺
B
iff
P
⟸
Q
impliedby
P
⟹
Q
implies
∈
in
∧
land
¬
lnot
∨
lor
↦
mapsto
{
x
∈
R
∣
x
>
0
}
mid
¬
neg
∄
nexists
∋
ni
∈
/
notin
{
x
∣
x
<
5
}
set
∴
therefore
→
to
∅
varnothing
Macros
5
y
ˉ
bar
x
2
+
x
2
def
a
b
mathchoice
✓
newcommand
Ahoy!
renewcommand
Math Operators
42
Pr
pr
arccos
arccos
arcsin
arcsin
arctan
arctan
ar
g
arg
cos
cos
cosh
cosh
cot
cot
coth
coth
csc
csc
de
g
deg
det
det
dim
dim
exp
exp
g
cd
gcd
hom
hom
in
f
inf
inj
lim
injlim
ker
ker
l
g
lg
lim
lim
lim
inf
liminf
x
lim
limits
lim
sup
limsup
ln
ln
lo
g
log
max
max
min
min
y
asin
x
operatorname-star
asin
x
operatorname
proj
lim
projlim
sec
sec
sin
sin
sinh
sinh
3
x
sqrt
sup
sup
tan
tan
tanh
tanh
lim
varinjlim
lim
varliminf
lim
varlimsup
lim
varprojlim
Negated Relations
55
⪊
gnapprox
⪈
gneq
≩
gneqq
⋧
gnsim
gvertneqq
⪉
lnapprox
⪇
lneq
≨
lneqq
⋦
lnsim
lvertneqq
⊬
nvdash
≆
ncong
=
ne
=
neq
≱
ngeq
ngeqq
ngeqslant
≯
ngtr
≰
nleq
nleqq
nleqslant
≮
nless
∤
nmid
=
not
∈
/
notin
∦
nparallel
⊀
nprec
⋠
npreceq
nshortmid
nshortparallel
≁
nsim
⊈
nsubseteq
nsubseteqq
⊁
nsucc
⋡
nsucceq
⊉
nsupseteq
nsupseteqq
⋪
ntriangleleft
⋬
ntrianglelefteq
⋫
ntriangleright
⋭
ntrianglerighteq
⪹
precnapprox
⪵
precneqq
⋨
precnsim
⊊
subsetneq
⫋
subsetneqq
⪺
succnapprox
⪶
succneqq
⋩
succnsim
⊋
supsetneq
⫌
supsetneqq
varsubsetneq
varsubsetneqq
varsupsetneq
varsupsetneqq
Overlap and Spacing
11
0
∑
n
displaystyle
{
b
a
left
=
/
llap
1
≤
i
≤
n
∑
x
i
mathclap
=
/
mathllap
/
=
mathrlap
b
a
)
right
/
=
rlap
(
x
2
)
smash
3
x
sqrt
∑
sum
Relations
106
≏
bumpeq
:
≈
colonapprox
:
−
coloneq
:
=
coloneqq
:
∼
colonsim
≐
doteq
−
:
eqcolon
=
:
eqqcolon
⋈
join
⊂
subset
⊃
supset
⊢
vdash
⊪
vvdash
≈
approx
≊
approxeq
≍
asymp
∍
backepsilon
∽
backsim
⋍
backsimeq
≬
between
⋈
bowtie
≗
circeq
≅
cong
⋞
curlyeqprec
⋟
curlyeqsucc
⊣
dashv
:
:
dblcolon
≑
doteqdot
≖
eqcirc
≂
eqsim
⪖
eqslantgtr
⪕
eqslantless
≡
equiv
≒
fallingdotseq
⌢
frown
≥
ge
≥
geq
≧
geqq
⩾
geqslant
≫
gg
⋙
ggg
⋙
gggtr
a
>
b
gt
⪆
gtrapprox
⋛
gtreqless
⪌
gtreqqless
≷
gtrless
≳
gtrsim
∈
in
≤
le
≤
leq
≦
leqq
⩽
leqslant
⪅
lessapprox
⋚
lesseqgtr
⪋
lesseqqgtr
≶
lessgtr
≲
lesssim
≪
ll
⋘
lll
⋘
llless
<
lt
{
x
∈
R
∣
x
>
0
}
mid
⊨
models
⊸
multimap
∋
owns
∥
parallel
⊥
perp
⋔
pitchfork
≺
prec
⪷
precapprox
≼
preccurlyeq
⪯
preceq
≾
precsim
∝
propto
≓
risingdotseq
∣
shortmid
∥
shortparallel
∼
sim
≃
simeq
⌢
smallfrown
⌣
smallsmile
⌣
smile
⊏
sqsubset
⊑
sqsubseteq
⊐
sqsupset
⊒
sqsupseteq
=
!
stackrel
⊆
subseteq
⫅
subseteqq
≻
succ
⪸
succapprox
≽
succcurlyeq
⪰
succeq
≿
succsim
⊇
supseteq
⫆
supseteqq
≈
thickapprox
∼
thicksim
⊴
trianglelefteq
≜
triangleq
⊵
trianglerighteq
∝
varpropto
△
vartriangle
⊲
vartriangleleft
⊳
vartriangleright
Size
6
H
ug
e
huge
L
A
RGE
large
n
or
ma
l
s
i
ze
normalsize
scr
i
pt
s
i
ze
scriptsize
s
ma
ll
small
t
in
y
tiny
Spacing
18
a
b
enspace
a
b
c
d
hphantom
w
i
d
hskip
s\hspace7ex k
hspace
I
R
kern
(
a
mathstrut
a
b
mkern
a
b
mskip
a
b
negmedspace
a
b
negthickspace
a
b
negthinspace
a
b
nobreakspace
Γ
i
j
k
i
j
phantom
a
b
qquad
a
b
quad
a
b
space
a
b
thinspace
M
a
vphantom
Style
7
0
∑
n
displaystyle
lim
lim
d
c
scriptscriptstyle
b
a
+
d
c
scriptstyle
yes
&
no
text
∑
0
n
textstyle
\frac a b
verb
Symbols and Punctuation
61
□
box
⋄
diamond
L
A
T
E
X
latex
§
s
T
E
X
tex
∠
angle
‵
backprime
★
bigstar
▽
bigtriangledown
△
bigtriangleup
⧫
blacklozenge
■
blacksquare
▲
blacktriangle
▼
blacktriangledown
◀
blacktriangleleft
▶
blacktriangleright
⊥
bot
⋯
cdots
✓
checkmark
®
circledr
Ⓢ
circleds
♣
clubsuit
:
colon
†
dagger
‡
ddagger
⋱
ddots
°
degree
╲
diagdown
╱
diagup
♢
diamondsuit
x
1
+
⋯
+
x
n
dots
x
1
+
⋯
+
x
n
dotsb
x
,
…
,
y
dotsc
∫
A
1
∫
A
2
⋯
dotsi
x
1
x
2
⋯
x
n
dotsm
…
dotso
♭
flat
♡
heartsuit
∞
infty
…
ldots
◊
lozenge
✠
maltese
∡
measuredangle
℧
mho
∇
nabla
♮
natural
′
prime
♯
sharp
♠
spadesuit
∢
sphericalangle
□
square
⋆
star
√
surd
yes
&
no
text
⊤
top
△
triangle
▽
triangledown
◃
triangleleft
▹
triangleright
⋮
vdots
¥
yen
Units
2
x
x
rule
d
c
scriptscriptstyle
Vertical Layout
10
b
a
atop
b
a
frac
{
b
a
left
=
!
overset
b
a
)
right
=
!
stackrel
0
<
i
<
m
0
<
j
<
n
∑
substack
∑
sum
!
=
underset
a
+
(
c
b
a
)
vcenter